Statistical mechanics of kinks in 1+1 dimensions: Numerical simulations and double-Gaussian approximation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical mechanics of kinks in 1+1 dimensions: Numerical simulations and double-Gaussian approximation.

We investigate the thermal equilibrium properties of kinks in a classical Φ4 field theory in 1+1 dimensions. From large scale Langevin simulations we identify the temperature below which a dilute gas description of kinks is valid. The standard dilute gas/WKB description is shown to be remarkably accurate below this temperature. At higher, “intermediate” temperatures, where kinks still exist, th...

متن کامل

Statistical mechanics of kinks in 1+1 dimensions.

We investigate the thermal equilibrium properties of kinks in a classical φ field theory in 1 + 1 dimensions. The distribution function, kink density, and correlation function are determined from large scale simulations. A dilute gas description of kinks is shown to be valid below a characteristic temperature. A double Gaussian approximation to evaluate the eigenvalues of the transfer operator ...

متن کامل

Statistical mechanics in the extended Gaussian ensemble.

The extended Gaussian ensemble (EGE) is introduced as a generalization of the canonical ensemble. This ensemble is a further extension of the Gaussian ensemble introduced by Hetherington [J. Low Temp. Phys. 66, 145 (1987)]. The statistical mechanical formalism is derived both from the analysis of the system attached to a finite reservoir and from the maximum statistical entropy principle. The p...

متن کامل

Uniform semiclassical approximation in quantum statistical mechanics∗

We present a simple method to deal with caustics in the semiclassical approximation to the partition function of a one-dimensional quantum system. The procedure, which makes use of complex trajectories, is applied to the quartic double-well potential.

متن کامل

Statistical mechanics of Hamiltonian adaptive resolution simulations.

The Adaptive Resolution Scheme (AdResS) is a hybrid scheme that allows to treat a molecular system with different levels of resolution depending on the location of the molecules. The construction of a Hamiltonian based on the this idea (H-AdResS) allows one to formulate the usual tools of ensembles and statistical mechanics. We present a number of exact and approximate results that provide a st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review E

سال: 1993

ISSN: 1063-651X,1095-3787

DOI: 10.1103/physreve.48.4284